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Fig. 1. A model automatically constructed using our algorithm, the Dark Fingered Reef Crab from https://threedscans.com. The input triangle mesh of 2,141,606
triangles is remeshed to a directly renderable micro-mesh representation of 21,312 base-triangles, with ray tracing accelerated by dedicated hardware. The
micro-mesh is expanded on-demand to 2,223,780 displaced p-triangles and achieves a 15:1 compression ratio.

Micro-meshes (u-meshes) are a new structured graphics primitive supporting
a large increase in geometric fidelity, without commensurate memory and
run-time processing costs, consisting of a base mesh enriched by a displace-
ment map. A new generation of GPUs supports this structure with native
hardware p-mesh ray-tracing, that leverages a self-bounding, compressed
displacement mapping scheme to achieve these efficiencies.

In this paper, we present an automatic method to convert an existing multi-
million triangle mesh into this compact format, unlocking the advantages
of the data representation for a large number of scenarios. We identify the
requirements for high-quality y-meshes, and show how existing re-meshing
and displacement-map baking tools are ill-suited for their generation. Our
method is based on a simplification scheme tailored to the generation of high-
quality base meshes, optimized for tessellation and displacement sampling, in
conjunction with algorithms for determining displacement vectors to control
the direction and range of displacements. We also explore the optimization
of y-meshes for texture maps and the representation of boundaries.

We demonstrate our method with extensive batch processing, converting
an existing collection of high-resolution scanned models to the micro-mesh
representation, providing an open-source reference implementation, and,
as additional material, the data and an inspection tool.
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1 INTRODUCTION

Displaced micro-meshes (abbreviated p-meshes) are a recently in-
troduced polygonal representation for 3D models [NVIDIA 2022],
designed for efficient GPU rendering, particularly ray tracing. p-
meshes are natively ray traced and greatly reduce mesh size and
the size and construction time of acceleration structures.

A p-mesh is a special type of displacement-mapped mesh, consist-
ing of a coarse base triangular mesh and a set of scalar displacement
values modeling the high-frequency details. At rendering time, each
base-mesh face is subdivided into p-triangles and the resulting p-
vertices are displaced along interpolated directions (details of the
p-mesh structure are provided in Sec. 1.1).

Hardware is available that natively supports the rendering of
p-meshes, unlocking unprecedented triangle counts in interactive
applications such as videogames and virtual reality, and, ultimately
improving the quality of real-time rendering.

The construction of p-meshes is an unexplored area, whereas
traditional hi-res meshes can be produced with a variety of well-
established approaches, including manual digital sculpting, 3D ac-
quisition techniques, subdivision surfaces, and more. To allow digital
artists to produce y-meshes, asset authoring pipelines would have to
be devised anew or modified, incorporating new tools and modeling
approaches.

In this paper, we explore the problem of the automatic production
of a high-quality y-mesh from a traditional high-resolution mesh.
This is intended both as a bridge from traditional representations
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to u-meshes and as a tool in new potential asset creation pipelines
designed to directly produce p-meshes.

p-Meshes share many characteristics with other forms of dis-
placement-mapped surfaces, and a natural solution would be to
resort to a pipeline of existing tools to convert an input mesh into a
displacement-mapped surface (including tools for mesh decimation,
displacement map baking, semi-regular remeshing, and so on). How-
ever, the y-mesh scenario poses stringent requirements, and specific
objectives (see Sec. 1.2). The primary motivation of the present work
is to automatically construct a satisfactory p-mesh, something very
challenging with existing tools (see experiments in Sec. 10.8 and
10.9).

1.1 Background: the p-mesh structure

In this section, we summarize aspects of the y-mesh representation,
the output of our method. For further details, see the white paper
[NVIDIA 2022].

Base mesh. The base mesh of a y-mesh is a triangle mesh with
position and displacement vectors defined at the mesh vertices.
Each base mesh face is divided into a regular grid of 4% p-triangles,
specified by a per-face subdivision level k (Fig. 2-b). Note that each
unmodified base mesh triangle edge is composed of 2k segments.

Micro-displacements. At each pi-vertex the base mesh positions
and direction vectors are barycentrically interpolated. The direction
vector is then scaled by a per-u-vertex scalar displacement value and
added to the interpolated position to produce the displaced p-vertex
(Fig. 2d).

Water tightness. Bit-exact water-tightness between displaced base
faces is achieved through shared base mesh vertex positions and
displacement vectors, and duplication of displacement values on
shared edges, plus by using a per base face edge decimation control
bit to reduce the number of triangle edge segments by one half
along the associated edge. This imposes a constraint on adjacent
subdivision levels, they may differ by no more than one. We discuss
how to satisfy this requirement in Sec. 6 (Fig. 2c).

Encoding. The scalar displacements associated with each base
mesh face are stored in a micro-map (y-map), a structure for storing
per p-vertex attributes. Each displacement y-map contains

(Zk + l) (Zk_l + l), 11-bit normalized displacement values. The p-

map is laid out for efficiency of access and to facilitate compression
beyond the quantization to 11 bits.

Rendering. The p-mesh is designed with ray tracing in mind,
allowing p-triangles to be created as needed during rendering. By
construction, the displaced surface is bounded by the hull formed by
the base mesh face and the face defined by the tips of the displace-
ment vectors; we refer to this as a prismoid. (Fig. 3). The bounding
nature of the prismoid is exploited in the construction of the ray
tracer’s bounding volume hierarchy (BVH) as well as during the
actual tracing of rays.

Texture mapping support. pu-Meshes can optionally support tex-
ture mapping by storing texture coordinates at base mesh vertices
(as in any standard mesh) and linearly interpolating their values us-
ing the base mesh barycentric coordinates of the hit point. y-meshes
may also implement Mesh Colors with a y-map of colors [Yuksel
et al. 2010].
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Multiresolution. p-Meshes support four, watertight levels of detail.
HW ray queries may include a LOD bias where all y-meshes encoun-
tered during the trace are treated as though their subdivision level is
reduced by up to three, one sixty-fourth the p-triangles. Shader code
can exploit the y-mesh structure to arbitrarily reduce LOD, all the
way to the base mesh itself. As long as LOD is uniformly reduced by
lowering the subdivision level, the resulting mesh remains bit-exact
watertight.

1.2 Problem statement and objectives

Motivation: why p-meshes. The p-mesh representation is designed
to exploit the inherent coherence of high-quality geometry and pos-
sess qualities that significantly reduce the impact of using extremely
detailed models. The primary value of y-meshes is their extreme
compactness in video RAM, while maintaining high-efficiency ray
traced or rasterized rendering. The compression ratios mitigate
the storage and transmission time costs of detailed models, and
the intrinsic LOD amplifies these benefits by largely obviating the
need to maintain multiple, redundant LODs. Additionally, because
each p-mesh face serves as a good bounding structure for its con-
stituent p-triangles, the BVH size and build time are greatly reduced
when compared to an equivalent triangle-based model (build time
improvements of 7-15X and size savings of 5-20x are reported in
[NVIDIA 2022]). These strengths and the emerging hardware sup-
port make p-meshes a rendering primitive that could make possible
a dramatic increase in attainable geometric complexity.

To realize this benefit, a reliable construction method is needed,
tailored to the specific needs of the y-mesh structure. We want to
produce an accurate and efficient y-mesh representation of an input
surface expressed as a high-resolution triangle mesh. With this high-
level objective we see the need for trade-offs among a number of
conflicting goals, due to the specifics of the y-mesh representation:

Goal: Coarseness of base mesh. ji-Meshes are more memory effi-
cient the coarser the base mesh. More geometric detail is placed in
the scalar displacements with p-triangles generated on demand. The
current py-mesh design supports high amplification factors, more
than 1000 to 1. As a consequence, we seek a base mesh that is as
much as three orders of magnitude more coarse than the input sur-
face. However, as we have stated, this increased coarseness may
conflict with other desirable properties. Note that a wider range of
levels of detail may be provided by a coarser base mesh with higher
levels of subdivision.

Goal: Reprojectability. To reproduce the input surface, the y-mesh
must hit it with the set of rays defined by the p-mesh’s interpolated
displacement vectors. This requirement is both difficult to fulfill and
to test for satisfaction. Still, the desire for reprojectability pulls on
our algorithmic choices in multiple phases where it is in tension
with the other objectives. Ideally, the displacement direction rays
are locally orthogonal where they strike the input surface.

Goal: Isotropy. The regular grid of the subdivided p-mesh means
that their p-triangles inherit their shape and aspect ratio (prior to
displacement). A consequence is that roughly equilateral-shaped
base triangles will tend to more efficiently sample the final surface.
To preserve sampling efficiency we favor low aspect ratio base



(a) Base-mesh triangle

(b) Regular subdivision into p-triangles (c) Optional tessellation modification
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(d) p-vertex displacement

Fig. 2. The p-mesh geometric primitive. A base triangle is first refined using regular 1-to-4 subdivision, then border edges are optionally decimated to control
the triangulation density of p-mesh complexes while ensuring water-tightness, and finally, the refined geometry is displaced along linearly interpolated
directions sampled at base vertices. Scalar micro-vertex displacements are normalized in [0, 1].

triangles. Conversely, less accuracy is gained from samples taken
by long, thin base triangles.

Goal: Minimal prismoid volume. Since the prismoid envelopes the
represented surface (and p-triangles), and because the base trian-
gle area grows with mesh coarsening, the length of displacement
vectors is an important factor in reducing prismoid volume. Shorter
displacement vectors are desirable for two reasons: First, shorter
vectors mean greater accuracy from a fixed number of scalar dis-
placement bits, 11 in this case. Second, short displacement vectors
mean the prismoid serves as a tighter bounding hull, improving
culling and rendering performance. Since the prismoid is an enve-
lope, we penalize a base mesh farther from the surface.

Finally, our method needs to be efficient, scalable, and robust, if
it is to convert real-world, high-resolution models.

2 RELATED WORK

Efficient representations for high-resolution geometries. j-Meshes
belong to a long-lived line of research seeking methods and data
structures to lower the resources (computing power and memory
storage) for representing and rendering complex surfaces rich in
geometric detail.

Progressive schemes are adaptive multi-resolution representa-
tions that control the tessellation density dynamically across the
surface, significantly reducing the transition artifacts. Pioneered
by Hoppe with the Progressive Mesh data structure [Hoppe 1996],
these schemes encode the sequence of operations performed by an
edge-collapse decimation of the high-resolution mesh and smoothly
transition across resolutions by traversing the decimation sequence
(forward to coarsen the mesh, and reverse to refine it). Early ap-
proaches encoded transitions at triangle granularity [De Floriani
et al. 1998; Hoppe 1996; Puppo 1998], while more recent multi-
resolution schemes adopt patch-granularity at a few thousand trian-
gles to take advantage of the support of modern GPUs [Cignoni et al.
2003, 2004; Sander and Mitchell 2005; Yoon et al. 2004]. This trend
culminated in Nanite [Karis et al. 2021], with its LOD hierarchy
composed of 128 triangle clusters. Normal Meshes [Guskov et al.
2000] are similar to pg-Meshes in spirit, as they also represent the
high-resolution surface by subdivision and scalar displacement. In a
Normal Mesh, new vertices are displaced along the normal direction

of the local frame of the subdivided surface at the previous level,
making it a less ideal fit with hardware implementation.

Alternative approaches designed around fast GPU tessellation
schemes and displacement mapping have also been proposed [Bou-
bekeur and Schlick 2008; Lorenz and Dollner 2008; Schwarz and
Stamminger 2009]. These approaches represent a high-resolution
surface with displacement values stored in a texture image (e.g.,
height-fields), and adaptively refine and displace a low-resolution
base (or control) mesh according to the desired level. Typically, the
connectivity and density of the resulting finely tessellated mesh are
determined by simple subdivision schemes that might be efficiently
implemented in hardware or dedicated shader code. However, these
works share the need to decode them into simple triangles so that
a hardware-consumable ray tracing acceleration structure can be
built. This results in significant BVH construction costs and a loss
of compactness.

Remeshing and mesh simplification. One central task of our pro-
posal is to construct the base mesh that serves as the starting point
of tessellation and displacement. This can be seen as an instance of
the remeshing or mesh-simplification problem, where the task is to
optimize or coarsen the triangulation of a surface while preserving
the original surface appearance. The literature on these methods is
vast and spans several decades. We refer the reader to an appropriate
survey [Khan et al. 2022; Luebke 2001].

A common trend, which we also follow, is to optimize the mesh-
ing through a sequence of carefully selected local operations [Hoppe
et al. 1993] such as edge collapses, splits, flips, vertex smoothing
[Botsch and Kobbelt 2004; Cohen et al. 1998; Garland and Heckbert
1997, 1998; Garland and Zhou 2005; Hoppe 1999; Hu et al. 2017;
Lindstrom and Turk 2000; Surazhsky et al. 2003]. When remeshing
is done to reduce the triangle count of the input mesh, the focus is on
faithfully reproduction of the original surface, and state-of-the-art
methods determine the decimation sequence and vertex spatial loca-
tions by approximating the geometric error produced by the mesh
simplification. Most methods rely on vertex quadrics [Garland and
Heckbert 1997] to estimate the geometric error and compute optimal
vertex placements for the decimated mesh. Quadrics have been later
extended to incorporate additional appearance information other
than the surface geometry, such as colors [Garland and Heckbert
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1998] and texture coordinates [Garland and Zhou 2005; Hoppe 1999].
Other methods incorporate texture-deviation terms to minimize tex-
turing artifacts [Cohen et al. 1998], or visual differences [Lindstrom
and Turk 2000], to guide the simplification; however, these methods
are quite costly as they require rendering texture patches or the
entire object during the simplification process. An alternative to the
error quadrics is to compute the bidirectional Hausdorff distance
on local patches to guide the remeshing operations [Hu et al. 2017].

Our goal to produce isotropic triangulations is the central focus
of many semi-regular remeshing techniques. Among others, tech-
niques include Centroidal Voronoi Tessellation (CVT) [Alliez et al.
2005; Liu et al. 2009; Yan et al. 2009] to field-guided methods [Jakob
et al. 2015], to bounds to local remeshing operations [Hu et al. 2017]
disallowing the production of unfavorably shaped triangles. This
latter method shares similarities with our own but is not focused
on other objectives, such as coarseness.

All the above methods are general-purpose, whereas ours is de-
signed around the specific needs and goals dictated by our objective
(Sec. 1.2). This gives it a clear advantage, as exemplified by the di-
rect comparison we offer in Sec. 10.8 against a popular tool in this
category [Cignoni et al. 2008].

Displacement map generation. Displacement mapping, i.e. the idea
of representing a high-resolution surface by combining a coarse
surface representation with displacement values sampling the small-
scale surface detail, has a long history [Cook 1984]. The task of
producing the values and storing them in a texture image can be
seen as a form of texture baking [Cignoni et al. 1999; Lee et al. 2000],
an operation commonly supported, today, by common 3D modeling
suites [Adobe 2021; Blender Development Team 2022; Help 2021;
Marmoset 2022].

The displacement values can consist of either vector or scalar
data. Using scalars is clearly more efficient, but requires solving
intricate problems.

One is the need to ensure “re-projectability”, i.e., that the in-
tended surface is expressible as a warped heights-field defined over
the coarse representation. Several solutions have been proposed
to address this problem [Collins and Hilton 2002; Lee et al. 2000],
often tailored around specific cases, such as displacement of sub-
division surfaces [Panozzo et al. 2011]. Our solution, defined for
triangular meshes, compares favorably with similarly aimed exist-
ing method [Microsoft 2022] that combines displacement mapping
and base-mesh creation (see Sec. 10.3).

Another closely related problem is the determination of the di-
rections to use for the displacement. Studies focused on this sub-
problem already observed that good solutions coincide with the
visibility directions [Tarini et al. 2003], and our solution, enunciated
in Sec. 4, follow this route.

A recurring geometrical sub-problem that emerges in this context
and other contexts is relative to the cone of viewing directions from
which all the faces surrounding a vertex are visible without local oc-
clusions. [Aubry and Lohner 2008; Cohen et al. 1997; Kim et al. 1995],
Our algorithm (Sec. 4.1 can be seen as a more efficient way to deter-
mine if this cone is empty, and, if not, to find its centroid. [Cohen
et al. 1997] resort to an approximate solution based on linear pro-
gramming, which assumes that a solution exists; [Aubry and Lohner
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Fig. 3. Asingle base face, with per-vertex displacement vectors, corresponds
to a bilinear prismoid that bounds the surface of the represented p-mesh.

2008] propose a brute-force solution which has O(n*) complexity in
the number of faces; [Jiang et al. 2020] solve the optimization prob-
lem formulation directly with a constrained quadratic programming
solver; both strategies are impractical to integrate into the iterative
coarsening scheme that we use to generate a low-resolution base
mesh.

Bijective shells [Jiang et al. 2020] and high-order tetrahedral
meshes [Jiang et al. 2021] have been recently proposed as a geo-
metric framework for which attribute transfer and displacement
map synthesis are primary applications. Their generation employs
a similar approach to ours, based on local remeshing operations,
but the input surface must satisfy strong assumptions to guaran-
tee the existence of the bijection (manifold, self-intersection free)
that are generally violated by many meshes in practice. We offer a
comparison with [Jiang et al. 2020] in Sec. 10.9.

Displacement map and texture maps. One additional issue with
any displacement map surface, which we face in Sec. 9.2, is that
if the surface has additional textures (e.g. for storing colors), the
displacement negatively contributes to the distortion of the texture
map. This problem was observed in the past [McGuire and Whit-
son 2008; Zirr and Ritschel 2019], and existing solutions include
compensating for the deformation by using indirect textures: a 2D
offset field is computed and stored, and applied to texture accesses
to counter the distortion introduced by the displacements. Our so-
lution is tailored to the p-mesh scenario, and, working on texture
coordinates alone, conforms to the targeted data structure.

3 OVERVIEW

Our algorithm for constructing a py-mesh representation of a given
high-resolution input mesh M is structured in multiple phases.

In the first phase, we construct the base mesh Mp by coarsening
M (Sec. 5). To do so, we adapt existing mesh iterative decimation
approaches to pursue an appropriate trade-off between the goals
of coarseness, isotropy, small displacement volume, and, especially,
reprojectability (which we translate into characteristics we impose
on the face normals on Mp).

A central sub-problem we have to address is to determine the
per-vertex displacement directions on Mp (that is, the displacement
vectors, including their magnitude). This is crucial for reprojectabil-
ity, and we interleave this computation during the coarsening to
ensure that Mg admits valid directions.



Base-mesh B

Input mesh Base-mesh A
Fig. 4. In this example, using base-mesh A is drastically preferable to base-
mesh B, as it results in a smaller displacement volume, and smaller quan-
tization and aliasing issues. One way to detect this situation is to observe
that the top vertex of base-mesh B has a much lower visibility value.

Ideally, the interpolated displacement directions should be as
orthogonal as possible to both their origin on the base mesh and
their intersection point on the input surface. Because the latter is
expensive to enforce, we use a simpler proxy; we only consider the
base mesh geometry and ensure that the interpolated displacement
directions and local surface normals are consistently oriented. Be-
cause this criterion is also used to drive the coarsening, we discuss
it in the next section (Sec. 4).

The next phase is to determine subdivision levels for each face
of Mp pursuing the objectives of accuracy and memory parsimony,
while abiding by the constraints of the y-mesh structure (Sec. 6).

Next (Sec. 7), we produce the scalar displacement value for each
p-vertex, by ray-casting over My (similar to a standard displace-
ment map baking). This also determines an initial estimation of the
required magnitude of the displacement vectors.

Finally, we strive to minimize the displacement volume, redefining
the magnitude of the displacement vectors (Sec. 8).

4 DETERMINATION OF DISPLACEMENT DIRECTIONS

In our context, the choice of displacement directions is critical. In
this section, we show an effective criterion to guide this choice, that
depends only on the base-mesh Mp. We employ this criterion both
as guidance for the construction of a good Mp, and as a way to
specify the actual displacement directions over it.

Similarly to standard per-vertex normals, displacement directions
are unit vectors defined at mesh vertices, that point outward from the
surface. This similitude would suggest that displacement directions
can be constructed the same way as per-vertex normals are, e.g. with
an area-weighted average of per-face normals. Doing so, however,
often results in noticeable artifacts, exemplified in Fig. 5, showing
that more care must be used in selecting the appropriate directions.

The criterion that consistently worked best in our scenario is, for
a given base-mesh vertex v, to pick the direction that maximizes the
orthogonality with all the base-mesh faces incident to v; specifically,
the direction that maximizes the minimal orthogonality (measured
as the dot product between the face normal and the direction d). We
denote this maximal value as the visibility of the vertex v.

Micro-Mesh Construction « 5

Input mesh (2M triangles)

(a) Vertex normals (b) Optimal visibility

Fig. 5. Choosing the wrong displacement directions can lead to visible
geometric artifacts when the high-resolution surface is re-sampled by ray-
casting along interpolated vectors. Left: results obtained with naive vertex
normals (weighted average of the surrounding face normals). Right: results
from the same base mesh using the optimal visibility directions computed
as detailed in Sec. 4.1.

Formally, given a vertex v, let NV be the set of face normals of all
its adjacent faces; the visibility value V(v) of v is given by

V(v) = {ineaé( (ﬁlﬁl (d- n)) , (1)

Q being the set of unit directions. The maximizer of (1), d;nax, de-
fines the displacement direction for vertex v, while the visibility
value, which ranges from -1 (when N covers the entire Q) to +1
(when the faces adjacent to v are all co-planar), serves a predictor
of the quality of the y-mesh in the region around v. Crucially, we
restrict ourselves to strictly positive values, as negative values imply
artifacts such as vanishing interpolated displacement directions in-
side base-mesh faces. Also, (1) does not necessarily admit a unique
maximizer for negative values.

A problem equivalent to (1) emerged in a different context in
[Jiang et al. 2020], where it is reformulated in a way that can be
solved using Quadratic Programming (QP). This approach proved
too inefficient for our case, where this task occurs inside nested
loops (as we verify with the experimental comparison reported in
Sec. 10.9). Instead, we devise the following algorithm.
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dmax

Fig. 6. A graphical representation of the solution in (3).

4.1 Finding the optimal visibility direction
Given N, our algorithm finds k = V(v) and d;;qx when k is strictly
positive or detects when that is not the case, terminating with a
failure. It has a similar structure to Welzl’s algorithm [1991] for
computing the minimum enclosing disk of a set of 2D points (the
main difference is the necessity for us to detect failure cases).

We seek the maximal value k and a unit vector d;;,4x subject to

dmax -n; 2 k (2)

for all n; in N.

When |N| = 1, the solution is trivially k = 1, and d;;4x is the
only element in |N/.

Otherwise, we use an iterative algorithm. At any point, we keep an
active subset N/ C N with |[N’| = 2 or 3, and we derive a tentative
solution as the normal with the largest k among all the normals
fulfilling (2) in the equality sense for all n; € N, disregarding the
rest of N. Specifically, dnqx is the normalization of (see Fig. 6)

Ao = (ng +ny) when |N'| =2
"7 | (ny - ng) X (nz —ng) when |N| =3,

®)

flipped if it has a negative dot product with any arbitrarily chosen
n; € N/, and k = dpax - n; (in the rare cases when k = 0 the
algorithm returns a failure ).

We start by setting N’ as two arbitrary elements of N. At each
iteration, we find the tentative solution (d;nax.k) for N/, and check
whether that solution fulfills (2) also for all other elements in N;
if so, the algorithm terminates, returning the tentative solution.
Otherwise, the active subset N is updated with the inclusion of an
infringing n;, as follows.

We consider any non-strict subset of N’ with cardinality 1 or 2,
(a total of three possibilities, when |N’| = 2, or six, when |N’| = 3),
and insert n; into this subset, obtaining a new potential active set
N’ with cardinality 2 or 3. For each possibility, we solve with (3)
over N/ and test if the solution also verifies (2) for the (zero, one
or two) elements of N’ excluded from N”’. If no valid choice of
N’ is found, we determined that no k > 0 solution exists and
the algorithm fails; otherwise, we set N’ to the valid N’/ with the
smallest cardinality and proceed with the next iteration.

For robustness to numerical precision issues, we test (2) within
a small numerical tolerance (that is, a small constant value is sub-
tracted from k).

Validity. In a spirit similar to [Welzl 1991], our algorithm stems
from the observation that the optimal solution can always be iden-
tified by imposing up to three constraints in (2) to be fulfilled as
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equalities. This is because any choice of (dyqx, k) that fulfills more
than three constraints in (2) as equalities can be equivalently iden-
tified by imposing any three of them as equalities. Moreover, it is
easy to verify that, when N’ has two elements, then no possible
choice that fulfills (2) for both elements can improve the tentative
solution; when N’ has three elements, and no pair produces a tenta-
tive solution satisfying (2) for the third, then no choice that fulfills
(2) for all three elements can improve the tentative solution; this
implies that when a tentative solution is found that verifies (2) for
every element in N, it must be optimal.

Termination guarantee. Even if an element is initially excluded
from N it can be reintroduced in a later iteration, the algorithm is
guaranteed to terminate, as the value for k necessarily decreases at
each iteration.

Estimation of algorithmic complexity. We do not have an a priori
bound on the number of iterations, beyond the O(|N|?) number
of possible candidate subsets. However, from empirical testing over
hundreds of millions of problem instances, we found that the number
of iterations surpassed || in fewer than 10~ of the cases, and never
reached twice |N|.

5 BASE MESH GENERATION BY COARSENING

We generate the base mesh by performing a sequence of local coars-
ening operations on M, edge-collapses [Hoppe et al. 1993], progres-
sively turning it into Mp. An edge-collapse contracts an edge into a
vertex, which is positioned in some appropriate position, removing
its two adjacent faces from M. Our coarsening framework follows
the well-established mesh decimation approach first presented in
[Garland and Heckbert 1997], adapting it to our scenario.

Initialization. As normal, we associate to each vertex v; of M a
quadric error function Q; [Garland and Heckbert 1997] that is initial-
ized, for each vertex, as the sum of the quadric functions measuring
the squared distances from the planes of each face adjacent to v;.
We also associate to each vertex v; a normal n;, thus defining a local
tangent plane at each vertex.

5.1 Modified edge-collapse

Isotropy of Mp is crucial for us, therefore we modify the edge col-
lapse operation toward fulfilling this goal, by tweaking the position
of the vertex generated by every collapse to make the resulting faces
more regularly shaped, compatible with other objectives. Specifi-
cally, given an edge e = (v;,0;), we first compute the edge quadric
Qe as usual as the weighted average of the two vertex quadrics Q;
and Q;. We find the tangent smoothing position p that improves
the aspect ratio of the triangles after the collapse; after [Botsch
and Kobbelt 2004], we define p as the barycenter of e (the average
position of the union of the stars of v; and v;), and, we project p
on the tangent plane associated with either v; or vj; we pick the
one yielding a lower value of Q. (p). Then, we define a “smoothing”
quadric that measures the squared distance from p:

Qs(x) = lIx —pli3 ©
and we combine it with the original quadric using a weight A
Qe = Qe +4Qs. ©)



We take the minimizer of Q) as the position for the vertex generated
by the collapse. The effect of Qs is to pull the resulting vertex toward
p, without forcing it in areas resulting in an excessive geometric
distortion. In our experiments, we use A = 0.1.

5.2 Operation cost evaluation

At the core of mesh coarsening techniques is the strategy to evaluate
potential operations, in order to select the ones to perform, and,
crucially, the order of execution. In our case, for a given potential
collapse of edge e, we simulate it and evaluate a set of costs estimat-
ing its adverse effect on our objectives. Specifically, if v is the vertex
position resulting from the collapse, and f; the faces sharing v in
the potential configuration after the collapses:

e Cg(e) estimates the geometric error increase, and is evaluated
by applying the combined error quadric Q. at the position of
0;

e Cy(e) measures the maximum deviation from the normal of
fi to its original normal in the initial mesh, computed as their
dot product (or 0 if negative);

e C,(e) estimates the impact on the shape of triangles, and is
measured as the worst aspect ratio (see below) of any f;;

e Cy(e) estimates the impact on the reprojectability as the visi-
bility of V(v) (equation 1) after the collapse (or 0 if negative).

Cyg is best at 0, larger values denoting more geometric discrepancy
being introduced; Cy, C,, and Cy are factors between 0 (worst) to 1
(best).

Cg and Cy, contribute to the geometrical similarity between M and
Mgp; Cy, also prevents the creation of folded configurations, where a
triangle of M survives in Mp with an incoherently oriented normal.

Cy is crucial in ensuring reprojectability and drastically reduces
the displacement volume. For example, it discourages the edge col-
lapses that would turn configuration A into configuration B in Fig. 4.

C, favors the creation of quasi-equilateral triangles. After [Field
2000], we quantify the aspect-ratio of a triangle T as twice the ratio
of the inradius to the circumradius, resulting in a number from 0
for degenerate triangles to 1 for perfectly equilateral triangles:

16 - area(T)?
(80+51 +Sz) © S0 S1°82

aspect(T) = (6)

(but 0 if any s; is 0), where s; are the edge lengths of T.

Aggregate cost. We aggregate the costs of collapsing edge e into
a single scalar value Ciot(e), with
Cg (e)
Ca(e)@n - Ca(e)®= - Cy(e)®

Crot(e) = (7
The exponents Cp oy are constants controlling the relative impor-
tance of the penalty terms; for our experiments, we always use
wn = 0.1, wa = 0.5, and wy = 0.5.

Disallowed operations. If Cy 4 v is 0, the aggregated cost diverges
to co and the operation is never performed. Additionally, we set a
bound to the geometric error C5*®*, which we default to the square of
0.01 times the of the bounding box diagonal of M, and also disallow
operations with an associated cost Cg exceeding Cg"**.

Micro-Mesh Construction « 7

5.3 Operation prioritization strategy

At any given step, we have a potential operation for each edge of the
current mesh, except for the ones which would compromise two-
manifoldness [Dey et al. 1999]. Ideally, we would like to perform
operations in reverse order of aggregated costs, but this is costly to
compute.

We employ two strategies: at the beginning of the process, we
employ an approximate randomized strategy, which is faster but
only approximates the ideal order. When the number of faces drops
below a threshold (we always used 1 million), and operation order
becomes more crucial, we switch to a slower, more accurate strategy,
that guarantees the ideal order of collapses.

The rationale is that, as is well-known from previous literature
[Puppo 1998], several sequences of local simplification operations
lead to the same final mesh, and so the order of operations is less
crucial the furthest the current mesh is from the final base mesh.

In the accurate strategy, we score all potential operations with
their costs and store them in a priority queue (implemented as a
heap). Operations are extracted from the top of the queue and per-
formed in succession. Each edge collapse resulting in the creation
of vertex v invalidates all previously scored operations at edges in
the entire 2-star of v (including edges at its boundaries). Invalidated
operations are flagged (so that they are ignored and discarded when
they reach the top of the queue), and substituted with new opera-
tions, which are reevaluated for costs and reinserted in the queue.
This strategy is costly because each performed operation requires
the evaluation of an average of 42 potential operations.

The approximated strategy is a heuristic where only n,, randomly
selected potential operations are evaluated for cost, and the least
costly one is either performed, or discarded if its cost exceeds an
adaptive cost threshold Crnax. The advantage of this strategy is that
it bypasses the need to upkeep the queue and to pre-evaluate and
re-evaluate operation costs, resulting in a much faster process. The
parameters nop and Cpax balance between adherence to the ideal
order and computational time, and we determined them by repeated
testing. We use nop =3 and increase Cpmax by 30% every 20 consec-
utive rejected operations; to find an initial guess for Cipax we pick
the lowest cost from a set of 50 randomly sampled collapses.

5.4 Strict isotropy enforcement

In our context, face isotropy is an important goal (Sec. 1.2); specifi-
cally, faces in Mg with an aspect ratio much lower than 0.5 can be
considered extremely undesirable, especially for larger base-mesh
triangles that will be tessellated more densely. Ideally, it would be de-
sirable to avoid, almost completely, any such faces in Mg, something
that we failed to achieve by solely manipulating the cost function.

A natural strategy would be to just disallow any edge collapse
producing a face with an aspect ratio smaller than a given threshold
value amqy, irrespective of its cost. We found that this strategy
causes the simplification process to run out of viable operations
too early, in several areas of M (Fig. 7, middle). Instead, we keep
track, for each face, of the best aspect ratio experienced by that
face during the simplification, and only disallow an operation if
it produces a face worse than amex and also worse than its best
aspect ratio minus a fixed delta (we used 0.1). Combined with the
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1.5M Faces
Input mesh

15K Faces, 7agr = 0.4

Simple bound Smoothed collapses
Adaptive thresholding

Fig. 7. Decimating a 1.5M faces input mesh M (left) to 15K faces while
enforcing a minimal aspect ratio threshold of 0.4. Middle: direct enforcement
of this constraint locks all operations early during the simplification in
certain areas, resulting in clusters of small faces in Mpg. Right: our strategy
(see text) counters this effect.

smoothing strategy (Sec. 5.1) this is effective at enforcing the desired
constraint on aspect ratio without hindering the coarsening (Fig. 7,
right).

5.5 Stopping criteria

We run the coarsening until all residual operations are disallowed
for either having an infinite cost (with equation 7), exceeding the
geometric error Cg'®*, or violating the isotropy criteria. This means
that our system determines on its own the coarsest base mesh and
therefore the most efficient representation of the input surface as a
p-mesh. Optionally, a maximal number of base-mesh faces can also
be set, and the coarsening stops as soon as that number is reached.

Our simplification algorithm preserves positive visibility in all
produced vertices, while safeguarding other properties of common
remeshing and simplification algorithms, to prevent inversion of
normals or loss of manifoldness [Dey et al. 1999].

Even if we never introduce vertices failing to admit a positive-
visibility direction, such configurations may be present in the input.
In such cases, we allow the simplification to proceed by setting the
visibility score of a collapse Cy(e) to a very small positive value: in
our experiments, this solves the problem because the input mesh
undergoes a multitude of coarsening operations that tend to fix
such issues without ever introducing new ones (in any case, any
surviving problems are strictly local).

6 DETERMINATION OF REFINEMENT LEVELS

After computing the base mesh, the tessellation factor 2¥ must be
determined for each of its faces, taking advantage of the y-mesh
ability to vary the tessellation levels across base-mesh faces.

We roughly target a given number of y-triangle count |Fy|. By
default, we set |F,| at the number of faces of the original mesh.
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(a) Uniform subdivision

(b) Adaptive subdivision

Fig. 8. Comparison between uniform and adaptive subdivision strategies.

We devise two different strategies, targeting either uniform p-
triangle sizes or sizes of y-triangle that are adaptive to the local
shape complexity. Depending on the context, either can make sense.
For example, if textures are forfeited in favor of per-p-triangle data
(see Sec. 9.2), uniform p-triangle can be desirable. A comparison is
shown in Fig. 8.

Uniform p-triangle area. A regular subdivision of a triangle at
level I produces 22 p-triangles; therefore, an estimation of the con-
stant subdivision level that would produce the desired number of
micro-triangles can be derived as

1 |Fy|)
I=-log, |—=—]- 8

This gives an estimation for the expected average p-triangle area
am as

Ap Ap

am = 2B = LB ©)

|Ful 220 |Fg|
where Ap is the total area of the base mesh. Then, for a given base
triangle b, its estimated number of p-triangles is simply the ratio of
its area gy, to the average micro-triangle area:

% (10)

b
b=t
IFhl =22

and we set the subdivision level of a base triangle b as the rounding
to the nearest integer of

1 1 a
55 = logy Fbl =1+ 5 log (i) (11)
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Fig. 9. Error estimation for adaptive subdivision. The current subdivision
level I and the displaced micro-geometry are shown in blue. The displace-
ments of the micro-vertices added at level [ + 1 are shown in red.

This has a straightforward interpretation as the global subdivision
level I plus a correction that depends on the base triangle area ay,
relative to the average base triangle area ag = Ap/Fp.

Adaptive p-triangle area. In this strategy, we use an iterative
algorithm to determine subdivision levels of base triangles, driven by
the residual displacement error incurred by the actual displacement
of p-vertices.

Start with [ = 0 at all faces (corresponding to no refinement),
and for each face, we predict the effect on the geometric error
of a potential increase of the subdivision level by one. To do so,
we simulate the subdivision level increase, project all the newly
introduced p-vertex on the input mesh, and record the maximum
distance from any of them to the surface represented by the current
subdivision level (Fig. 9).

We store in a priority queue all potential resolution increase oper-
ations (always exactly one per base-mesh face), sorted according to
the predicted effect on the geometric error; we extract and perform
the most impactful refinement operation (reinserting in the queue a
new operation representing a further increase of resolution), until
the targeted number of micro-faces is reached.

Enforcing water-tightness. Both strategies operate on base trian-
gles in isolation, potentially infringing the y-mesh constraint about
neighboring faces differing by at most one tessellation level (under
the penalty of introducing gaps between base faces). The constraint
is enforced by a correction phase, where all pairs of adjacent faces
with a difference larger than one are corrected by (conservatively)
rising the lower tessellation level to the higher level minus one, until
no such pair remains. Finally, we set the edge decimation flags at
each pair of faces with a mismatching tessellation level, ensuring a
watertight y-mesh surface.

7 DETERMINATION OF SCALAR DISPLACEMENT
VALUES BY RAY-CASTING

Once the base mesh geometry is defined, we tessellate each base
face according to its subdivision level, and determine the scalar dis-
placement values; this is done by ray-casting each p-vertex from its
position on the base mesh, along the interpolated directions, against
the original mesh. For each p-vertex, we record its unnomralized
displacement values as the parametric position, on the ray, of the
intersection with the input mesh. These values can be negative or
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Global bounds. Total volume: 2.15 x 10° units®

Local bounds. Total volume: 0.63 X 10° units?

Fig. 10. Displacement vector lengths determined with global vs. local
bounds.

larger than 1, because the displacement vectors are unitary, and the
input mesh surface will in general run both above and below the
base mesh.

To accelerate the ray-casting procedure, we use a BVH of axis-
aligned bounding boxes for the input mesh. We ensure robustness to
self-intersections and other geometric artifacts in the input mesh, by
adopting standard mitigation techniques, such as only intersecting
the high-resolution surface at faces that are coherently oriented
with respect to the ray.

We also exploit the smoothness of the scalar displacement field to
improve robustness with respect to outlier rays and missed intersec-
tions. If we detect intersection outliers (e.g. rays that travel too far
before hitting the input surface), we clear the corresponding scalar
displacements and replace them by interpolating the displacement
distances from valid neighbors.

8 OPTIMIZATION OF BASE DISPLACEMENT LENGTHS

At this point, we determine the length of the displacement vectors,
striving to keep these lengths short so as to reduce the volume of
the displacement prismoids, as per our goal (Sec 1.2).

We shift the base mesh and assign a length to all its displacement
vectors to ensure that the displacement volume encapsulates the
entire displaced surface.

We identify, for each base-mesh vertex v, the global minimum
and maximum unnormalized displacements values Smin and Smax,
among all y-vertex in the star of faces around v. Then, the position
Po and displacement vector d, of v is updated to

Po < Pot gmindv, (12)
d; — (Smax - Smin)dv- (13)

While not necessarily optimal, this simple strategy results in tight
displacement volumes.

Scaling each displacement direction differently causes the orienta-
tion of the interpolated directions to change slightly, which requires
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ysaw jnduy
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Orthogonal displacements Tangent displacements

Fig. 11. In order to more accurately reproduce the boundary curves of the
input mesh, we can use displacement directions that are tangential to
the surface (right), rather than orthogonal, at y-mesh boundaries. In these
cases, we also add, in the input mesh, a vertical “wall” (in red) made of small
polygons orthogonal to the surface boundary, as a target to be hit by the
ray-casting procedure.

repeating the ray-casting phase to update them; additionally, due to
curvature, even the updated displacements are not guaranteed to
be limited to the 0 to 1 interval.

A simple way to bypass this costly update would be to define
Smin and Smax to be the global bounds of the un-normalized dis-
placement values across the entire surface; the scalar values can
then be normalized by a linear mapping. However, this strategy
leads to much larger displacement volumes, by more than a factor
of 3 in our experiments (see Fig. 5).

As a time-saving approximation, at the expense of introducing
only a negligible increase in the surface approximation error, we
resort to a quick update of displacement values after changing the
displacement vectors at base-mesh vertices: for each p-vertex, we
simply re-project the displaced position on the old ray into the
newly defined ray.

9 EXTENSIONS

We extend our general framework for p-meshes construction to
tackle two cases of practical importance: y-meshes enriched with
traditional texture data, and open p-meshes featuring semantically
important boundaries.

9.1 p-Meshes with detailed boundaries

When the input surface is open, its boundary curves are subject to
being coarsened, losing their geometric details. In many scenarios,
this can be acceptable, but there are cases where the shape of the
boundary is semantically important; consider for example the eye-
shaped holes depicted in Fig. 11.

A straightforward solution is to flag border edges and disallow
coarsening them, so as to keep them finely tessellated in the base
mesh; this is a trade-off with an obvious cost in terms of increased
base-mesh complexity and triangulation quality. We propose a
cheaper alternative where we let boundary edges be coarsened
in the base mesh, and we reuse the displacement map mechanism
to recover the original boundary shape in the p-meshes.

To this end, we redefine displacement directions at boundary
vertices of the base mesh to be tangent to the surface, rather than
approximately orthogonal to it. We define such directions so that
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they are both tangential to the surface and orthogonal to the open
boundary edges of the base mesh. The boundary p-vertices will
thus be displaced to form the boundary curve. This trades, in the
proximity of the boundary, the ability to express height fields on
the surface with the ability to reproduce a detailed boundary curve.

To define appropriate scalar displacement values, prior to the
ray-casting phase, we enrich the input mesh with a band of “flap”
triangles departing from the boundaries, orthogonally to the surface.
These triangles are designed to be hit by the rays stemming from
the p-vertices at the boundary of the p-mesh (see Fig. 11).

9.2 Texture-mapped pi-meshes

In many cases, the input mesh can come with its own set of orig-
inal texture maps (storing, for example, colors), and our p-mesh
construction procedure may optionally be required to preserve the
textured signal information in the final y-mesh. There are several
routes to accomplish this result.

The increased triangle count afforded by p-meshes opens the
possibility to avoid using traditional texture maps and simply re-
bake the input textures into attributes stored at p-vertex, using the
p-mesh schema. This resulting solution closely resembles in concept
the Mesh-Color approach to texture mapping [Yuksel et al. 2010].

In other cases, however, it can still be desirable to store the original
signal in traditional textures. As we discussed in Sec. 1.1, the y-
meshes schema accommodates texture coordinates, just like any
standard mesh: simply, UV-coordinates are stored at base mesh
vertices and interpolated linearly, during rendering, at each p-vertex.

This route requires generating a parametrization, or UV-map, for
the base mesh (including texture cuts). Many automatic or semiau-
tomatic tools can be used for this purpose, treating the base mesh
as a traditional triangle mesh. A vast literature exists covering this
task [Sheffer et al. 2006], and it is beyond the scope of this work to
discuss it; we observe that the task is eased by the relative coarse-
ness of the base mesh. Considering the intrinsic multi-resolution
nature of y-mesh, this route constitutes an excellent answer to the
open problem of how to share textures or UV-maps across different
levels of detail [Yuksel et al. 2019].

A residual problem, however, remains. The parametrization is
unaware of the displacements, which negatively affect it by aggra-
vating texture distortions. We introduce a way to re-optimize any
existing parametrization defined on the base mesh of a y-mesh to
account for its actual shape. This strongly mitigates the problem
and warrants the use of any existing tool to UV-map p-meshes.

Traditionally, UV-maps are optimized by defining a function mea-
suring the distortion of the map (e.g. angle or area distortions),
and minimizing this function over the space of all per-vertex UV-
assignment.

We reformulate the distortion function so that it sums the con-
tributions across all displaced micro-triangles instead, whose ver-
tices are expressed as convex combinations of base mesh texture
coordinates, and minimize this function over all base vertex UV-
assignments.

This concept can be applied to any distortion energy function; we
used the ARAP energy [Liu et al. 2008], which has the benefit of pe-
nalizing both angle and area distortions, resulting in a maximization
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Fig. 12. Notation used for the ARAP energy formulation.
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Fig. 13. Notation for the barycentric ARAP energy formulation.

of isometry, a crucial property for texture mapping. On standard
triangle meshes, ARAP energy can be efficiently minimized using a
local/global minimization scheme, which we adapt to p-meshes, as
follows.

Recap: ARAP optimization (for standard meshes). Let t be the index
of a mesh triangle x; = (x(t), xi, xg) and, and let u; = (ué, ui, ug) be
the 2D texture coordinates associated to t. Then, let J; (u) be the
2 X 2 Jacobian of the map from x; to us, and R; € R an auxiliary
matrix encoding a 2D rotation.

The ARAP energy [Liu et al. 2008] is defined as

1
E@R) =5 > cotfyll(ui—w) =Ry (i~ )l (19)
(i,j) €he

where (i, j) is the triangle to which half-edge (i, j) belongs and 6;;
is the opposite angle within ¢(i, j) (Figure 12).

This energy is minimized by alternating local and global steps:
in the local steps, the parametric coordinates u are kept fixed, and
the best fitting rotation matrices L are determined per triangle by
computing the SVD decomposition of J;(u) = USVT and setting
R; = UVT; in the global steps, the rotation matrices are kept fixed,
yielding a quadratic energy in u (equation 14) that can be minimized
by setting the gradient to zero and solving the resulting sparse linear
system.

Extending ARAP to y-meshes. Given a displaced micro-triangle t,
its UV coordinates z; in parameter space are expressed as a linear
combination of the base UV coordinates ug, uj, uz (Figure 13):

[ I Y A

zi=Uw =|uy u uf|lw!l], i=012 (15)
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Fig. 14. Our minimization of texture distortions for y-meshes.

where the base UV coordinates have been arranged as columns of a
2 X 3 matrix U multiplying the vector of the barycentric weights w'.

In the local step, we compute the best-fitting rotation R; associ-
ated with each displaced micro-triangle ¢. This is easily computed as
the linear map between the isometric 2D projection of the displaced
micro-triangle x; and its interpolated parameter-space position z;.

When solving the global step, the energy term associated to a
generic “micro” half-edge (i, i+ 1) which can be written in quadratic
form:

E(i,i +1) = cot ps2[| (U(W' = w'™) =Ry (x; = xis)lI’,  (16)
with R; encoding the rigid alignment of the isometric 2D projection

(%0, X1, x2) of the displaced micro-triangle to its UV counterpart.
The gradient of the energy term (16) with respect to u; is then

Vu,E(i,i+1) =
2 . . . .
=2cot by Z ul (W = wi) = Re(xi = xi1) | (W) = with).
k=0
j=0,12 (17)
We compute the global gradient by accumulating the micro half-
edge terms, and set it to zero by solving the global ARAP step with

fixed L matrices.
We show the results of this strategy in Figure 14 and Sec. 10.7.
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Directly from input With preliminary mesh optimization
Fig. 15. An example of base mesh generation for a bas-relief scan without
and with a preliminary input optimization step, improving isotropy of the
base triangulation at the back of the model.

10 RESULTS AND COMPARISONS

We perform an extensive quantitative and qualitative evaluation of
our p-mesh generation framework. Our reference implementation
is publicly released as open-source software at the project page.

Input preparation. Before starting the iterative coarsening, the
input mesh triangulation is optimized with local topology transfor-
mations [Hoppe et al. 1993] to remove large triangles and slivers,
as these can affect the quality of the final base mesh (see Fig. 15).
We iterate operations until no edge that is longer than 5 times the
average input edge length exists, alternating between splits, flips,
and collapses.

10.1 Batch-conversion of high-resolution models

To demonstrate the robustness and feasibility of our method for
general conversion of 3D models, we run our algorithms over the
ThreeDScans repository [Three D Scans 2022], on commodity hard-
ware, reporting aggregate data about runtime and compression
efficiency, as well as average geometric error and isotropy distribu-
tion across the entire collection comprising of 121 high-resolution
meshes (mean input triangle count is 1.7M). We provide all result-
ing pu-meshes for inspection, in the additional material, as well as a
p-mesh preview tool.

The results of this experiment are shown in Fig. 19. On average,
we achieve a 15:1 compression ratio and the processing time per
model is less than five minutes. At the same time, our method
consistently produces highly isotropic displaced p-meshes while
keeping the geometric error at reasonable levels.

10.2  p-Mesh ray-tracing performance

We measure the rendering performance of the batch-converted -
meshes from Sec. 10.1 using an NVIDIA GeForce RTX 4090, which
supports p-mesh ray-tracing. Compared to an equivalent standard
triangle mesh, the p-meshes produced by our construction method,
improve BVH size by a median factor of 6 and BVH build time
by a factor of 4, while the tracing of rays is a median of 1.3 times
slower. The relative performance may be attributed to the dynamic
generation of watertight p-triangles, which are then subject to the
standard ray-triangle intersection computation. Crucially, prismoid
optimization produces a 3 to 4-fold speedup in rendering perfor-
mance by better fitting the bounding prismoids to the displaced
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p-mesh surface. We provide a table with aggregated and individual
measurements in the additional materials.

10.3 Memory size and accuracy

The experiment shown in Figure 16 evaluates the impact of the res-
olution of the base mesh on both the GPU occupancy and accuracy
of the produced p-mesh. In this experiment, we force the coarsening
of the base mesh to stop only at a 1/n fraction of the input mesh
triangle count, and in each case, we set the subdivision levels to
match the resolution of the input mesh.

GPU size. The p-mesh is more compact than the input mesh
(considering it as an indexed mesh with 32-bit indices and 32-bit
floats for coordinates, with no attribute) already for a reduction of
1/4. The GPU occupancy is reduced for coarser base meshes, but for
fewer faces than 1/64, the improvements become negligible, as the
majority of memory is used to store the scalar displacements. At
that point, the y-mesh uses only about 0.14 of the memory required
by the explicit indexed mesh representation.

Reproduction accuracy. The reproduction accuracy is always very
high. We estimate the geometric error as the area-weighted average
of the projection distance from the original surface to the y-mesh
surface, expressed as a percentage of the input AABB diagonal. For
higher resolution base meshes, the error is closer to zero, while for
a wide range of reduction factor, from 1/8 to 1/128 it is measured
at roughly 2 x 107> the bounding box diagonal, due to the effect of
re-sampling the geometry.

10.4 Effect of scalar quantization

A crucial part of the y-mesh data structure is that scalar displace-
ments are quantized to a small number of bits (see Sec. 1.1). In our
outputs, this quantization can be made more aggressive thanks to
our displacement minimization (Sec. 8), which also reduces the ef-
fect of the aliasing. The impact can be significant, because, on our
outputs, the scalar displacement values account for 85% to 90% of
the final storage, so reducing the number of bits has almost a linear
effect on the total GPU storage size.

The experiment in Figure 17 visually shows the impact of quan-
tization on a p-mesh obtained with our method. This visual com-
parison suggests that as low as 7 bits are already sufficient to avoid
noticeable quantization artifacts. In all other experiments, however,
we conservatively used 11 bits, which is standard for the y-mesh
format and roughly matches the precision that would be afforded
by standard 32-bit floating point numbers around the value +1.

10.5 Level of Details

One of the expected advantages of the y-mesh representation is
its multi-resolution capabilities, i.e. the ability to be rendered at a
range of different Levels of Detail (without introducing any crack
or artifact), simply by dynamically capping the subdivision levels.
Figure 18 showcases this on one example produced by our method,
confirming the expectations.
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Fig. 16. Used GPU RAM and introduced geometric error for various deci-
mation rates of the base mesh.

Table 1. Conversion of high-resolution 3D models to p-Meshes. Visual
results are shown in Figure 24.

Model |F| |Fg| [Ful Input p-Mesh  Iso-  Error Time
MBs MBs tropy X107 (sec)

Telegraph (A) 8M 35K 85M 136.3 7.5 0.69 6.79 436
GW Bust (B) 26 M 30 K 27M 447.2 20.2 0.73 3.28 1660
Murex (C) 35M 30 K 4M 60.4 3.9 0.81 10.3 317
Lucy (D) 28 M 35K 29.5M 475.3 22.7 0.75 3.38 1661
Statuette (E) 10M 40K 105 M 171.5 22.7 0.75 13.1 563
Dragon (F) 7™M 30 K 7.5M 123.9 6.7 0.81 9.16 399
Fangyi (G) 215M 100 K 23M 370.3 20.5 0.74 6.77 1215
Ewer (H) 8M 100 K 8M 136.2 9.8 0.78 13.5 462

10.6  Scalability

We test our method on a collection of high-resolution meshes with
face counts in the order of 107. Results are shown in Figure 24 re-
ported in Table 1. Our method fares well in terms of the compression
ratios, processing times, resulting geometric errors (as a percentage
of bounding box diagonal), and triangle shape isotropy, measured
as the area-weighted average of the micro triangle aspect ratios.

10.7 Textures and UV-maps

The experiments in Figures 14 and 20 assess the efficacy of our strat-
egy to mitigate the texture distortion induced by the displacement
(Sec. 9.2).

For these models, we construct an initial parametrization over the
base mesh using Blender automatic parametrization tools [Blender
Development Team 2022], followed by an automatic tool to reduce
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Table 2. Displacement-aware parametrization of p-Meshes. Textured results

are shown in Figure 20

Model Fig.  |Fp| [Fyul ~ ARAP  p—ARAP p—ARAP  Gain Time

base before after
Wooden Dragon  20a 20K  33M 0.007 0.035 0.021  399% 20s
Grotesque02 20b 30K 6.5M 0.012 0.033 0.025 39.3 % 28s
Wooden Lion 20c 10K 15M 0.021 0.039 0.029 25.6 % 8s
Tokay Gecko 20d 10K 2.3M 0.035 0.089 0.069 22.4 % 10s

texture cuts [Maggiordomo et al. 2021], and followed by a pass of
ARAP texture coordinate optimization [Liu et al. 2008].

In Table 2 we report energy measures before and after optimizing
base-texture coordinates with our re-weighted formulation, as well
as the optimized standard ARAP energy on the base mesh, which is
used as initialization for the displacement-aware minimization. The
energy decrease is quite noticeable despite significantly restricting
the degrees of freedom of the system. The resolution of the base
mesh ultimately determines the system variables, and coarser base
meshes result in smaller gains in terms of distortion energy (rows 3
and 4 of Table 2). In terms of performance, our method is extremely
fast as it operates on a reduced set of variables. In fact, when mini-
mizing the re-weighted ARAP energy with the local-global method
the bottleneck is the local optimization step, and not from the sparse
linear solve required in the global step. The local step requires com-
puting the SVD of a possibly huge number of small 2 X 2 matrices
(one for each micro-triangle), but this process is trivial to parallelize
to gain a significant speed-up. As can be seen from the table, the time
required to minimize the re-weighted energy is extremely small.

10.8 Comparison with standard mesh simplification

As our p-mesh generation procedure has no perfect predecessor,
we compare it against the use of existing tools to achieve the same
effect. The base mesh can be constructed with simplification tools,
or with tools designed for general displacement-map generation.

For this comparison, we choose Meshlab [Cignoni et al. 2008]
because of its popularity and Simplygon [Microsoft 2022] because it
natively supports the generation of displacement-mapped surfaces
with its simplification and resampling workflow.

In Figure 21 we show a qualitative comparison of the results
obtained using as starting point the base meshes obtained with
Meshlab, Simplygon, and our decimation strategies. In all cases, an
input mesh, 2.1M faces, is decimated to 25K faces to produce the
base mesh. Displacing base meshes obtained with Meshlab and
Simplygon produce geometric artifacts and self-intersections, while
our base mesh does not suffer from such issues because it ensures
that consistently oriented displacement directions can always be
defined. Our method outperforms competing methods also in terms
of geometric error, p-triangles isotropy, and processing times (see
Figures 22 and 22).

10.9 Comparison with Bijective shells [Jiang et al. 2020]

Base mesh construction. In Figure 23, we compare against Bijec-
tive shell [Jiang et al. 2020] as a way to construct the base mesh;
this work is akin to our framework in that care is taken to ensure
re-projectability of a coarsened mesh into the input mesh. In [Jiang
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]

11 Bits 7 Bits 6 Bits 5 Bits

Fig. 17. Effect of quantization of scalar displacements.

Fig. 18. Dynamically controlling the level of detail of a y-Mesh by progressively decreasing the subdivision level of base faces.
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Fig. 19. Batch-processing the ThreeDScans [Three D Scans 2022] mesh repository. For each dataset, we report the end-to-end processing time, data compression,
and quality metrics for the displaced p-mesh: average isotropy, and average, 99th percentile, and maximum geometric error (expressed as a fraction of the
bounding box diagonal).
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(a) RWT180 — Wooden Dragon

(c) RWT236 — Wooden Lion
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(b) RWT205 - Grotesque02

(d) RWT295 - Tokay Gecko

Fig. 20. Examples of produced textured p-Meshes, from models taken photogrammetry reconstructions dataset [Maggiordomo et al. 2020]. The color maps
show the ARAP energy before and after the optimization with our re-weighted scheme (see legend in Fig. 14). Also see Table 2.

A

[=
[]»

Meshlab Simplygon Ours

Fig. 21. Comparison with other mesh simplification approaches. The two close-ups show failures due to the presence of base mesh vertices with negative

visibility, resulting in displacement directions that are not coherently oriented.

et al. 2020], this is guaranteed by redefining the displacement to
occur along a more complex path than a straight line. However, as
the case in Figure 23 shows, the existence of this bijective map is
not sufficient to ensure correct reproduction when the paths are
straight, as with y-meshes.

Visibility direction computation. We tested our new algorithm
to compute optimal visibility (Sec. 4.1) against the QP formulation
of (1) proposed in [Jiang et al. 2020], using a state-of-the-art QP

solver [Stellato et al. 2020]: our method is more than 26X faster (0.64
against 17.24 seconds to solve 1M instances).

11 CONCLUSIONS

In this paper, we introduced a robust method to automatically con-
vert a high-resolution triangle mesh into a p-mesh, a recently dis-
closed representation, designed for direct hardware rendering us-
ing commercially available GPUs. Our remeshing algorithms are
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Meshlab - Error = 2.14 x 107>

Meshlab - Isotropy = 0.78

Simplygon - Error = 2.20 X 107>

Simplygon - Isotropy = 0.65
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Fig. 22. p-Mesh geometric error (above) and isotropy (below) for different base mesh generation approaches.

]

784 base faces Distance = 9.73 X 1073 Isotropy = 0.57

Bijective shell - Processing time 2 minutes

]

784 base faces Distance = 6.37 X 107> Isotropy = 0.78

Ours - Processing time 40 seconds

Fig. 23. RWT1 (The Thinker Sculpture by OpenMVS) — Comparison with
Bijective shell [Jiang et al. 2020]. The input mesh has 220K faces. This is a
failure case for Bijective shells, resulting in a base mesh that is unable to
reproduce the original surface by means of scalar displacements.

specifically designed to produce high-quality p-meshes, delivering
accurate, compact models directly consumable by GPUs today. p-
meshes offer significant BVH savings and good tracing performance
with nothing blocking increased performance should usage warrant
the investment. With this combination, we significantly lower the
barrier to rendering extremely detailed geometries and could bring

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.

previously unattainable geometric fidelity to the full spectrum of
systems.

This work is intended as a stepping stone towards enabling the
adoption of extremely high-resolution geometries in interactive and
real-time graphics applications, allowing a wide variety of high-
quality 3D assets to be readily available by means of a robust and
reliable conversion process.
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